Package: unusualprofile 0.1.4
unusualprofile: Calculates Conditional Mahalanobis Distances
Calculates a Mahalanobis distance for every row of a set of outcome variables (Mahalanobis, 1936 <doi:10.1007/s13171-019-00164-5>). The conditional Mahalanobis distance is calculated using a conditional covariance matrix (i.e., a covariance matrix of the outcome variables after controlling for a set of predictors). Plotting the output of the cond_maha() function can help identify which elements of a profile are unusual after controlling for the predictors.
Authors:
unusualprofile_0.1.4.tar.gz
unusualprofile_0.1.4.zip(r-4.5)unusualprofile_0.1.4.zip(r-4.4)unusualprofile_0.1.4.zip(r-4.3)
unusualprofile_0.1.4.tgz(r-4.4-any)unusualprofile_0.1.4.tgz(r-4.3-any)
unusualprofile_0.1.4.tar.gz(r-4.5-noble)unusualprofile_0.1.4.tar.gz(r-4.4-noble)
unusualprofile_0.1.4.tgz(r-4.4-emscripten)unusualprofile_0.1.4.tgz(r-4.3-emscripten)
unusualprofile.pdf |unusualprofile.html✨
unusualprofile/json (API)
NEWS
# Install 'unusualprofile' in R: |
install.packages('unusualprofile', repos = c('https://wjschne.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/wjschne/unusualprofile/issues
Last updated 9 months agofrom:6d7bd1745e. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win | OK | Nov 13 2024 |
R-4.5-linux | OK | Nov 13 2024 |
R-4.4-win | OK | Nov 13 2024 |
R-4.4-mac | OK | Nov 13 2024 |
R-4.3-win | OK | Nov 13 2024 |
R-4.3-mac | OK | Nov 13 2024 |
Exports:cond_mahais_singularp2labelproportion_roundproportion2percentile
Dependencies:clicolorspacecpp11dplyrfansifarvergenericsggnormalviolinggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr